Mathematical Recreations  
Acheron 2.0 
Tell your Friends about Acheron 2.0 Acheron 2.0 Menu Fast Track What's New in Acheron 2.0 Introduction to Fractals Overview of Acheron 2.0 Fractals Curves in Acheron 2.0 Von Koch Curve Mandelbrot Curve Hilbert Curve Cesaro Curve Heighway Curve Minkowski Curve Peano Curve Square Curve Sierpinski Curve Sierpinski Objects Feedback about Acheron 2.0 Download Counters of Acheron 2.0 Support of Acheron 2.0
Safe Use of Acheron 2.0

Introduction to Fractals The euclidean geometry uses objects that have integer topological dimensions. A line or a curve is an object that have a topological dimension of one while a surface is described as an object with two topological dimensions and a cuve as an object with three dimensions. This geometry adequately describes the regular objects but failed to be applicable when it comes to consider natural irregular shapes. Benoit B. Mandelbrot introduced a new concepts, that he called fractals, that are useful to describe natural shapes as islands, clouds, landscapes or other fragmented structures. According to Mandelbrot, the term fractals is derived from the latin adjective fractus meaning fragmented. According to Mandelbrot, a fractal can be defined as 'a set for which the HausdorffBesicovitch dimension strictly exceeds the topological dimension'. This clever mathematical definition, albeit quite obscure for noninitiated people, means that a fractal curve is a mathematical function that produce an image having a topological dimension between one and two. Intuitively, fractals can be seen as curves partially filling a twodimentional area. These curves are often described as spacefilling curves. Fractals curves exhibit a very interesting property known as selfsimilarity. If you observe precisely the details of a fractal curve, it appears that a portion of the curve replicates exactly the whole curve but on a different scale. Mathematicians have in fact created geometrical fractal curves long before the introduction of the fractal geometry by Benoit Mandelbrot. Some of these curves are wellknown as the Von Koch's snowflake or the triangle of Sierpinsky.
