Back to Index Page

Mathematical Recreations

Acheron 2.0



Tell your Friends about Acheron 2.0



Acheron 2.0 Menu

Fast Track
What's New in Acheron 2.0
Introduction to Fractals
Overview of Acheron 2.0
Fractals Curves in Acheron 2.0
     Von Koch Curve
     Mandelbrot Curve
     Hilbert Curve
     Cesaro Curve
     Heighway Curve
     Minkowski Curve
     Peano Curve
     Square Curve
     Sierpinski Curve
     Sierpinski Objects
Feedback about Acheron 2.0
Download Counters of Acheron 2.0
Support of Acheron 2.0
Download Acheron 2.0animated-download

Safe Use of Acheron 2.0


About Acheron 2.0
Language: Visual C++
IDE:Microsoft Visual Studio 2012
App. Version:2.0
Appl. Size:4.36 MB (4.572.672 bytes)
Creation Date:30-Dec-‎2013 ‏23:14 (GMT+1)
Link Type:Statically Linked
Installer Size:1.74 MB (1.825.462 bytes)
Installer Date:30-Dec-‎2013 ‏23:14 (GMT+1)




Thanks for bringing support to TGMDev
through PayPal Donations...

      Introduction to Fractals

  The euclidean geometry uses objects that have integer topological dimensions. A line or a curve is an object that have a topological dimension of one while a surface is described as an object with two topological dimensions and a cuve as an object with three dimensions. This geometry adequately describes the regular objects but failed to be applicable when it comes to consider natural irregular shapes.

  Benoit B. Mandelbrot introduced a new concepts, that he called fractals, that are useful to describe natural shapes as islands, clouds, landscapes or other fragmented structures. According to Mandelbrot, the term fractals is derived from the latin adjective fractus meaning fragmented. According to Mandelbrot, a fractal can be defined as 'a set for which the Hausdorff-Besicovitch dimension strictly exceeds the topological dimension'. This clever mathematical definition, albeit quite obscure for non-initiated people, means that a fractal curve is a mathematical function that produce an image having a topological dimension between one and two. Intuitively, fractals can be seen as curves partially filling a two-dimentional area. These curves are often described as space-filling curves.

  Fractals curves exhibit a very interesting property known as self-similarity. If you observe precisely the details of a fractal curve, it appears that a portion of the curve replicates exactly the whole curve but on a different scale. Mathematicians have in fact created geometrical fractal curves long before the introduction of the fractal geometry by Benoit Mandelbrot. Some of these curves are well-known as the Von Koch's snowflake or the triangle of Sierpinsky.


Von Koch Curve

Von Koch Curve
Mandelbrot Curve

Mandelbrot Curve
Minkowski Curve

Minkowski Curve
Hilbert Curve

Hilbert Curve
Cesaro Curve

Cesaro Curve
Sierpinski Curve

Sierpinski Curve
Sierpinski Objects

Sierpinski Objects
Peano Curve

Peano Curve
Squares Curve

Squares Curve
Heighway Curve

Heighway Curve