| |||||||
Acheron 2.0 displays the following fractal curves; : | |||||||
Visitors Counter 9582 visitors since Jan 2010 All pictures from Acheron 2.0 |
Introduction Back to Top
The euclidean geometry uses objects that have integer topological dimensions. A line or a curve is an object that have a topological dimension of one while a surface is described as an object with two topological dimensions and a cuve as an object with three dimensions. This geometry adequately describes the regular objects but failed to be applicable when it comes to consider natural irregular shapes. Benoit B. Mandelbrot introduced a new concepts, that he called fractals, that are useful to describe natural shapes as islands, clouds, landscapes or other fragmented structures. According to Mandelbrot, the term fractals is derived from the latin adjective fractus meaning fragmented. According to Mandelbrot, a fractal can be defined as 'a set for which the Hausdorff-Besicovitch dimension strictly exceeds the topological dimension'. This clever mathematical definition, albeit quite obscure for non-initiated people, means that a fractal curve is a mathematical function that produce an image having a topological dimension between one and two. Intuitively, fractals can be seen as curves partially filling a two-dimentional area. These curves are often described as space-filling curves. Fractals curves exhibit a very interesting property known as self-similarity. If you observe precisely the details of a fractal curve, it appears that a portion of the curve replicates exactly the whole curve but on a different scale. Mathematicians have in fact created geometrical fractal curves long before the introduction of the fractal geometry by Benoit Mandelbrot. Some of these curves are well-known as the Von Koch's snowflake or the triangle of Sierpinsky.
Construction Back to Top As most of the fractal curves, the construction of the curve is based
on the recursive procedure. The third iteration already gives an intricate pattern that require a much larger drawing to follow the construction rule visually. Playing with Acheron 2.0 will help learning the construction of this curve ... The limit curve, obtained when iteration number tends to infinity, covers
the entire area, object known as a space-filling curve.
All Variations described are available using Acheron 2.0
Born: 14 March 1882 in Warsaw, Poland Died: 21 Oct 1969 in Warsaw, Poland Waclaw Sierpinski attended school in Warsaw where his talent for mathematics was quickly spotted by his first mathematics teacher. This was a period of Russian occupation of Poland and despite the difficulties, Sierpinski entered the Department of Mathematics and Physics of the University of Warsaw in 1899. The lectures at the University were all in Russian and the staff were entirely Russian. It is not surprising therefore that it would be the work of a Russian mathematician, one of his teachers Voronoy that first attracted Sierpinski. In 1903 Sierpinski was awarded the gold medal for an essay on Voronoy's contribution to number theory. Sierpinski graduated in 1904 and worked for a while as a school teacher of mathematics and physics in a girls school in Warsaw. However when the school closed because of a strike, Sierpinski decided to go to Krakóv to study for his doctorate. At the Jagiellonian University in Krakóv he attended lectures by Zaremba on mathematics, studying in addition astronomy and philosophy. He received his doctorate and was appointed to the University of Lvov in 1908. When World War I began in 1914, Sierpinski and his family happened to be in Russia. When World War I ended in 1918, Sierpinski returned to Lvov. However shortly after taking up his appointment again in Lvov he was offered a post at the University of Warsaw which he accepted. In 1919 he was promoted to professor at Warsaw and he spent the rest of his life there. Sierpinski was the author of the incredible number of 724 papers and 50 books. He retired in 1960 as professor at the University of Warsaw but he continued to give a seminar on the theory of numbers at the Polish Academy of Sciences up to 1967. He was awarded honorary degrees from the universities Lvov (1929), St Marks of Lima (1930), Amsterdam (1931), Tarta (1931), Sofia (1939), Prague (1947), Wroclaw (1947), Lucknow (1949), and Lomonosov of Moscow (1967). He was elected to the Geographic Society of Lima (1931), the Royal Scientific Society of Ličge (1934), the Bulgarian Academy of Sciences (1936), the national Academy of Lima (1939), the Royal Society of Sciences of Naples (1939), the Accademia dei Lincei of Rome (1947), the German Academy of Science (1950), the American Academy of Sciences 1959), the Paris Academy (1960), the Royal Dutch Academy (1961), the Academy of Science of Brussels (1961), the London Mathematical Society (1964), the Romanian Academy (1965) and the Papal Academy of Sciences (1967). Biography From School of Mathematics and Statistics - University of StAndrews, Scotland |
Warning: include(./../../tgmadvertising.html): failed to open stream: No such file or directory in /customers/c/7/b/tgmdev.be/httpd.www/applications/acheron/curves/curvesierpinski.php on line 417 Warning: include(): Failed opening './../../tgmadvertising.html' for inclusion (include_path='.:/usr/share/php') in /customers/c/7/b/tgmdev.be/httpd.www/applications/acheron/curves/curvesierpinski.php on line 417 |