 
Acheron 2.0 displays the following fractal curves; :  
Visitors Counter 25680 visitors since Jan 2010 All pictures from Acheron 2.0 
Introduction Back to Top
The euclidean geometry uses objects that have integer topological dimensions. A line or a curve is an object that have a topological dimension of one while a surface is described as an object with two topological dimensions and a cuve as an object with three dimensions. This geometry adequately describes the regular objects but failed to be applicable when it comes to consider natural irregular shapes. Benoit B. Mandelbrot introduced a new concepts, that he called fractals, that are useful to describe natural shapes as islands, clouds, landscapes or other fragmented structures. According to Mandelbrot, the term fractals is derived from the latin adjective fractus meaning fragmented. According to Mandelbrot, a fractal can be defined as 'a set for which the HausdorffBesicovitch dimension strictly exceeds the topological dimension'. This clever mathematical definition, albeit quite obscure for noninitiated people, means that a fractal curve is a mathematical function that produce an image having a topological dimension between one and two. Intuitively, fractals can be seen as curves partially filling a twodimentional area. These curves are often described as spacefilling curves. Fractals curves exhibit a very interesting property known as selfsimilarity. If you observe precisely the details of a fractal curve, it appears that a portion of the curve replicates exactly the whole curve but on a different scale. Mathematicians have in fact created geometrical fractal curves long before the introduction of the fractal geometry by Benoit Mandelbrot. Some of these curves are wellknown as the Von Koch's snowflake or the triangle of Sierpinsky.
Construction Back to Top The first iteration gives the following picture: Properties Back to Top
All Variations described are available using Acheron 2.0
Born: 23 Jan 1862 in Königsberg, Prussia (now Kaliningrad, Russia) Died: 14 Feb 1943 in Göttingen, Germany David Hilbert entered the University of Königsberg where he went on to study under Lindemann for his doctorate which he received in 1885. Hilbert was a member of staff at Königsberg from 1886 to 1895. In 1895,
Hilbert was appointed to the chair of mathematics at the University of
Göttingen, where he continued to teach for the rest of his career. Hilbert's first work was on invariant theory. In 1893 while still at
Königsberg Hilbert began a work on algebraic number theory. A systematic study of the axioms of Euclidean geometry led Hilbert to
propose 21 such axioms and he analysed their significance. Hilbert contributed to the development of mathematical physics by his important memoirs on kinetic gas theory and the theory of radiations and to many branches of mathematics, including invariants, algebraic number fields, functional analysis, integral equations, mathematical physics, and the calculus of variations. Hilbert's famous 23 problems challenged (and still today challenge) mathematicians to solve fundamental questions. Hilbert received many honours. In 1905 the Hungarian Academy of Sciences gave a special citation for Hilbert. In 1930 Hilbert retired and the city of Königsberg made him an honorary citizen of the city. He gave an address which ended with six famous words showing his enthusiasm for mathematics and his life devoted to solving mathematical problems: Wir müssen wissen, wir werden wissen  We must know, we shall know. Biography From School of Mathematics and Statistics  University of StAndrews, Scotland 
